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Abstract. We analyse the contribution of Madelung terms to the local potential on atomic sites
in disordered alloys, and assess the extent to which the variation in the local potential should
be observable in high-resolution x-ray photoelectron experiments. We show that a model in
which the charge on an atom is determined by the global composition predicts considerable
broadening of core-level photoelectron spectra. Such disorder broadening has not been observed
experimentally. A model in which the local charge is determined by the number of ‘unlike’
nearest neighbours predicts a much smaller disorder broadening, but one which should be
observable in high-resolution measurements for some alloy systems.

1. Introduction

The electrostatic energy of arrays of charges has attracted continued attention since the work
of Madelung [1]. Elegant solutions to the Madelung problem exploiting the near cancellation
of electrostatic effects at long range have continued to emerge [2–5], giving insight into a
wide range of ‘ionic’ phenomena. The advent of electron spectroscopy stimulated renewed
interest in Madelung potentials at crystal surfaces [6, 7], and the influence of Madelung
energies on surface ordering and segregation has also been considered [8]. In recent years
the inclusion of Madelung energies for disordered systems, usually implicitly assumed to
be zero, has been shown to be essential to a trulyab initio description of the physical
and electronic structure of random alloys [9]. A model in which the charge on a site is
determined by the local composition has gained increasing support [10, 9] and has been
used to explain the structural stability of a wide range of compounds and alloys [11].

In the present work we consider disorder effects in the total electrostatic potential
(Madelung plus intra-atomic) of random alloys. One expects that variation in local bonding
configuration will give rise to a distribution of potentials, and it is the aim of this work to
predict the magnitude of this ‘disorder broadening’. Since the core-level binding energy of
an atom at sitei in a solid measured with respect to the corresponding elemental solid can
be written as

Eib = eV i − EiR (1)

whereV i is the potential at sitei andEiR is the relaxation energy, disorder broadening
of the electrostatic potential should be manifest in core-level photoelectron spectra. In the
next section we consider two models for determining chargesQi in disordered systems,
and we investigate the distributions of the corresponding potentials using direct real-space
summation of the Madelung series for finite clusters. This approach permits investigation
of surface effects, relevant to x-ray photoelectron spectroscopy (XPS) experiments. The
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Madelung contribution to core-level binding energy shifts will also be briefly discussed.
In section 3 we present XPS spectral simulations, and in section 4 we discuss the wider
context of Madelung effects in disordered systems and consider how current charge models
may be generalized.

2. Potentials and core-level binding energies

Following references [10] and [11] we model a random substitutional alloy by an array of
charged spheres, each centred on a lattice point of the crystal structure. For simplicity we
set the atomic radii asR/2 whereR is the nearest-neighbour distance. The potential at
lattice pointi in the alloy relative to the corresponding elemental solid is then

V i = 14.4

R

{
2Qi +

∞∑
m=1

1

ρm

∑
j∈m

Qj

}
(2)

where the first term is the intra-atomic term and the second term is the Madelung potential.
If the chargesQj are measured in units ofe, the electronic charge, and all distances are in
Å, then the potential is in volts. (We suppress the 14.4 factor in subsequent equations for
brevity.) The first summation in the Madelung term is over concentric spheres with radius
Rρm centred on sitei, and the second is over theZm sites in themth shell.

We consider an unspecified crystal lattice populated with A and B atoms and asign an
occupation variableSi to each site such thatSi = −1 (+1) if i is occupied by an A (B)
atom. If the alloy is perfectly random there is no correlation in theSi . To characterize the
distribution of potentials in the random alloy we first require a model for the charge at each
site.

2.1. The fixed-charge model

We may suppose that the charge on a sitei is determined by the composition fraction for the
species type at that site,ci . For a random binary alloy AxB1−x , charge neutrality requires

−QAcA = QBcB (3)

wherecA = x andcB = 1− x. We refer to this as the fixed-charge model (FCM) since the
charges do not vary with the local environment but merely reflect global stoichiometry; all
of the A atoms and separately all of the B atoms have the same charge. Given equation
(3), the average potential for A (or B) sites with a particular number of ‘unlike’ nearest
neighboursNu is

〈V (Nu)〉A (B) = QA (B)

R

(
2+ Z1− Nu

1− cA (B)

)
(4)

where the angled brackets indicate averaging over all possible configurations of the alloy.
In metallic alloys the degree of charge transfer is of the order of a tenth of an electron per
atom [9]. Taking a nearest-neighbour distanceR of 3 Å, equation (4) predicts on average
a difference of approximately 1 eV in potential per unit change inNu. This would imply
considerable disorder broadening of core-level XPS spectra in random alloys, an expectation
contradicted by experiment. We conclude that the FCM does not give a useful description
of charges in disordered systems.
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Table 1. Structural parameters for the FCC, SC, BCC and diamond lattices.

m

1 2 3 4 5 6 X Y

FCC 8.22 66.72 −3.56
ρm 1

√
2

√
3 2

√
5

Zm 12 6 24 12 24
Km 4 4 2 1 0

BCC 4.93 33.12 −2.14

ρm 1 2
√

1
3 2

√
2
3

√
11
3 2

Zm 8 6 12 24 8
Km 0 4 2 0 1

SC 3.33 20.04 −1.34
ρm 1

√
2

√
3 2

√
5

Zm 6 12 8 6 24
Km 0 2 0 1 0

Diamond 0.92 16.64 −2.16

ρm 1 2
√

2
3

√
11
3 4

√
1
3

√
19
3

Zm 4 12 12 6 12
Km 0 1 0 0 0

2.2. The correlated-charge model

Chemical wisdom suggests that an atom surrounded by all ‘like’ atoms will be approximately
neutral while an atom bonded to all ‘unlike’ atoms will experience the maximum possible
charge transfer. This means that thechargesin a random system are correlated even when
the site occupationsare truly random. Magriet al have suggested [10] a correlated-charge
model (CCM) with the form

Qi = λ
∑
j∈nni

(Si − Sj ) = 2λNuS
i (5)

whereλ determines the ionicity and nni denotes the set of sites that are nearest neighbours
of site i. The intra-atomic contribution toV i(Nu) is independent of configuration by
assumption, and so〈V (Nu)〉 can be written as

〈V (Nu)〉A (B) = 4λNu
R

SA (B) + 1

R

∞∑
m=1

1

ρm
〈Qm(Nu)〉A (B) (6)

where

〈Qm(Nu)〉A (B) =
〈∑
j∈m

Qj

〉
. (7)

Choosing a central site and its nearest-neighbour composition amounts to fixing theSj for
j ∈ nni . This influences the charges of these sites both directly, since they all have by
definition sitei as a neighbour, and indirectly since a number of these sites are also mutual
nearest neighbours. Substitution of equation (5) into equation (7) yields

〈Q1(Nu)〉A (B) = 2λSA (B)Z1(Z1− 1−K1)(1− cA (B))− 2λSA (B)(Z1−K1)Nu (8)
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whereKm is the number sites that are simultaneously nearest neighbours of the central site
and a site in themth shell [9]. The choice ofi and its nearest-neighbour composition does
not impose any selection criteria on the site occupations of any subsequent shells, but any
shell containing sites which share nearest neighbours with the central site (i.e.Km 6= 0) still
experience an indirect influence on their charge. For these shells we find

〈Qm>1(Nu)〉A (B) = 2λSA (B)KmZm

[
cA (B) − 1+ Nu

Z1

]
. (9)

All shells with Km = 0 are on average charge neutral and do not contribute to〈V (Nu)〉.
Equation (6) can now be rewritten:

〈V (Nu)〉A (B) = 2
λ

R
SA (B)Z1(Z1− 1−6)(1− cA (B))+Nu2

λ

R
SA (B)(2− Z1+6) (10)

where6 is the lattice-dependent constant defined by

6 =
∞∑
m=1

KmZm

ρmZ1
. (11)

Equation (10) has the form

〈V (Nu)〉A (B) = λ

R

[
X(1− cA (B))+ YNu

]
SA (B) (12)

and so for a given lattice the average potentials are linear inNu with gradient independent
of composition. Values ofKm,Zm, ρm,X andY can be found in table 1 for various lattices.
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Figure 1. The variation of〈V (Nu)〉A, the average potential for A sites with a given number
of unlike nearest neighbours, withNu for the A0.5B0.5 FCC lattice. The decomposition into
intra-atomic and Madelung potentials is also shown. The solid lines are the analytic results
while the dashed lines are results obtained numerically using a cluster.

The variation of 〈V (Nu)〉A with Nu and its decomposition into intra-atomic and
Madelung components are plotted in figure 1 for the random A0.5B0.5 FCC lattice, where
values ofR = 3 Å and λ = 0.1/12 (corresponding to an average charge of 0.1) were
used. The Madelung part of〈V (Nu)〉A (B) scales faster withNu than the intra-atomic part
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Figure 2. The variation of〈V (Nu)〉A, the average potential for A sites with a given number of
unlike nearest neighbours, withNu for the A0.5B0.5 SC lattice. The decomposition into intra-
atomic and Madelung potentials is also shown. The solid lines are the analytic results while the
dashed lines are results obtained numerically using a cluster.

but with opposite sign toSA (B), and so the total potential varies with−NuSA (B) (i.e. Y is
negative). For the chosen values ofλ andR, Y ′ (=14.4Yλ/R), the gradient of〈V (Nu)〉
againstNu, for the FCC lattice, is 0.14 eV, suggesting a modest disorder broadening of
alloy core-level XPS spectra. Figure 2 shows the corresponding variation of〈V (Nu)〉 with
Nu for the disordered SC lattice. In this caseλ = 0.2/6 was chosen to give a similar range
of potentials as for the FCC lattice. Although no disordered alloys with an underlying SC
lattice are known to exist, comparison of SC and FCC lattices reveals the dependence of
disorder effects on the degree of ‘openness’ of the crystal structure.

2.3. Cluster calculations

Cluster calculations were performed to investigate the distributions of theV i(Nu) about their
average values. When considering ordered crystals it is sufficient to calculate the Madelung
potential at one site which may be chosen to be at the centre of a large cluster. To study the
distribution of potentials in a disordered system one must sample over a sufficiently large
number of sites for a reasonable number of configurations to be represented. On the other
hand the sampled volume must be small compared to the cluster size so that the sampled
sites are truly bulk-like. To get some indication of the feasibility of this procedure we first
considered a cube-shaped SC cluster with (001) surfaces comprising 303 sites and populated
to give the rock-salt structure. Since the standard Evjen procedure [12] is not applicable to
disordered systems, the surface charges for the rock-salt structure were determined using
equation (5) for consistency. At the centre of the cluster we found the correct Madelung
potential to within an accuracy of 1 in∼108, and this value was preserved to 1 in∼105

within ten lattice parameters of the centre. The ‘CCM-terminated’ surface was found to
greatly aid convergence of the Madelung potential with respect to cluster size, very much
in the spirit of the Evjen termination. These results for the ordered system provide a guide
for the size of cluster and sampling volume one would like to use for the disordered case.
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Figure 3. Each solid curve shows the distribution of potentials obtained for an A0.5B0.5 FCC
cluster for the indicated value ofNu. The dashed curve is a Gaussian distribution with FWHM
given by 4.2 times the component separation.
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Figure 4. Each solid curve shows the distribution of potentials obtained for an A0.5B0.5 SC
cluster for the indicated value ofNu. The dashed curve is a Gaussian distribution with FWHM
given by 3.5 times the component separation.

While preserving composition, disorder was then introduced into the site occupations,
and all charges in the system were determined according to equation (5). The potentials
at sites within ten lattice parameters from the centre of the cluster were then calculated.
The calculation was repeated for an FCC A0.5B0.5 cluster. For both structures,λ andR
were given the values used in the previous subsection. Values of〈V (Nu)〉A calculated for
disordered FCC and SC clusters are compared with the analytical results from equation
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(10) in figures 1 and 2 respectively. We find that the CCM clusters give the correctNu-
dependence for the average potentials, and also their absolute magnitude to a reasonable
approximation. We may attribute this latter observation to the local charge neutrality implicit
in equation (5). Local charge neutrality ensures that all shells outside the sampling volume
are nearly charge neutral for any given cluster configuration. In the FCM this condition
would only be met by configurational averaging, and large fluctuations would be expected
between the absolute potentials within sampling volumes of different particular clusters.

The accuracy of the CCM cluster results for〈V (Nu)〉 suggests that the clusters should
also give a good description of thedistributionsof theV i(Nu) about these averages. These
distributions are shown in figures 3 and 4 for the FCC and SC structures respectively. For
any givenNu we find V i(Nu) ≈ 〈V (Nu)〉A (B) ∀i = A (B). Thus the core potential at a
site is determined predominantly by the composition of its nearest-neighbour shell. The
calculated distributions for eachNu are found to be Gaussian with FWHM smaller than the
gradientY ′ (i.e. the component splitting in figure 3) for the FCC lattice. For the SC lattice
the component broadening and component splitting are comparable. Comparison with the
Gaussians in figures 3 and 4 (given by the dashed curves) shows that the overall effect
of disorder is an approximately Gaussian broadening. It can be seen that the component
broadening is a much greater fraction of the overall broadening for the more open SC lattice.

2.4. Binding energy shifts

We recall that for an ordered system a chemical shift in core-level photoelectron binding
energy relative to the corresponding elemental solid can be expressed in the form [13]

1E
A (B)
b ≈ e1V A (B) = e1QA (B)

(
2

R
− α

R

)
(13)

whereα is the Madelung constant and the approximation in the first equality is due to the
neglect of relaxation energy shifts. We now derive the equivalent expression for a random
alloy within the CCM.

The probability of a site having a given number of unlike neighbours is

P(Nu) = Z1!

(Z1−Nu)!Nu!
(cA (B))Z1−Nu(1− cA (B))Nu . (14)

The average A (B) site charge (when no constraint onNu is enforced) is therefore

Q̄A (B) = 2λSA (B)
Z1∑
Nu=0

P(Nu)Nu = 2λSA (B)Z1(1− cA (B)). (15)

The average charge in the first shell is then

Q̄1 =
Z1∑
Nu=0

P(Nu)〈Q1(Nu)〉 = −2λSA (B)Z1(1− cA (B)) (16)

while for subsequent shells we find

Q̄m>1 =
Z1∑
Nu=0

P(Nu)〈Qm>1(Nu)〉 = 0.

Thus we find that there is on average a charge of−Q̄A (B) in the first shell, while all
subsequent shells are on average charge neutral, implying perfect screening (on average) in
the first shell.
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Using equations (15)–(17) we obtain

V̄ A (B) = 2
λ

R
SA (B)Z1(1− cA (B)) = Q̄A (B)

R
(17)

indicating a linear dependence of the core-level binding energy on composition [14]. By
analogy with equation (13), the effective Madelung constant for disordered alloys within
the CCM isαeff = 1 for all lattices and for all compositions. Shells withm > 1,Km 6= 0
contribute to the average Madelung energy but do not contribute to the average potential
V̄ . Clearly for disordered systems a distinction must be made between Madelung constants
corresponding to the electrostaticpotential and the electrostaticenergy. For the CCM,
Magri et al [10] have shown that the energy constant exhibits a parabolic variation with
composition.

These results may be contrasted with those for the FCM. In the FCM all shells are on
average neutral on account of global charge neutrality, and so there is no screening of the
central site. Madelung effects then vanish on average (i.e.αeff = 0).
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Figure 5. Comparison of exact (circles), NNA (solid curve) and ANA (dotted curve) simulated
XPS spectra for the random FCC lattice.

3. Core-level XPS spectra

3.1. Spectral simulation

In this section we use the potentials calculated for the A0.5B0.5 FCC cluster to simulate XPS
spectra using the expression

〈f i(ω)〉A (B) = 1

NA (B)

∑
i=A (B)

LW (ω, V i) (18)

whereNA (B) is the number of A (B) sites and where we have assumed that the component
spectraf i(ω) are given byLW(ω, V i), Lorentzians with FWHMW and position determined
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by V i , the potential at sitei. The more compact expression

〈f i(ω)〉A (B) ≈
Z1∑
Nu=0

P(Nu)L
W(ω, 〈V (Nu)〉A (B)) (19)

whereP(Nu) is the probability of a site having a givenNu, is suggested by the demonstration
in section 2 that theV i are determined primarily by the composition of the nearest-neighbour
shell. We refer to this expression as the ‘nearest-neighbour approximation’ (NNA). A further
approximation

〈f i(ω)〉A (B) ≈ LW(ω, V̄ A (B)) (20)

referred to as the ‘average neighbour approximation’ (ANA) assumes a single effective A (B)
environment which experiences the average potentialV̄ . Comparison off i(ω) determined
using equations (15) (exact) and 17 (ANA) will determine explicitly the extent of disorder
broadening. Comparison of equations (15)–(17) is made in figure 5 for the FCC cluster,
whereW = 0.6 eV and a Gaussian broadening of0 = 0.3 eV FWHM were used to
simulate lifetime broadening and experimental resolution respectively. For the parameters
used, disorder can be seen to significantly broaden the core spectrum. We find that the
13-component envelope generated by the NNA performs extremely well. Furthermore the
small ‘missing’ Gaussian broadening could be explicitly added to the NNA spectrum to
recover essentially the exact result.

Core-level XPS spectra of disordered alloys have usually been performed with
monochromated Al Kα radiation with an experimental resolution of about 0.5 eV. While
chemical shifts in core-level binding energies are routinely observed, alloy core-level spectra
have previously been interpreted in terms of a single bulk component. The results in figure 5
show that ‘third-generation’ XPS spectrometers, which achieve an experimental resolution of
about 0.25 eV with a high photon flux, should be capable of observing disorder broadening
of XPS lines in alloys with narrow core levels.

3.2. Surface effects

In simulating the XPS experiment we must consider surface effects. We consider first the
surface of the ordered SC cluster described in section 2.3. With the NaCl bond length of
2.82Å and assuming that bulk and surface sites have unit ionicity we obtain a reduction of
the anion core-level binding energy of 0.339 eV at the (001) surface, in excellent agreement
with previous work [6, 7]. Reducing the surface ionicity to 5/6 in the spirit of the CCM we
obtain a Madelung shift of 1.712 eV but a counter shift in the intra-atomic term of 0.851 eV
giving a reduction in the surface core-level binding energy of 0.861 eV. The tendency for the
CCM termination to enhance surface core-level shifts in ordered systems has been pointed
out previously by Watsonet al [7]. For the subsurface layer we obtained a potential shift
of −0.004 eV for unit surface ionicity and 0.053 eV for the CCM termination. In the next
layer down the shifts were two orders of magnitude smaller. This rapid decay of surface
effects with depth is confirmed by the general experimental observation of only bulk and
surface features in core-level XPS.

Calculated average potentials for the surface and subsurface sites of the disordered SC
cluster are compared with the bulk averages in figure 6. As for the ordered alloy, we find
that the subsurface layer is essentially bulk-like while the surface potentials have a shallower
Nu-dependence. Bulk, surface and subsurface potentials had very similar distributions about
their respective averages. These results suggest that XPS spectra are well represented by the
superposition of a bulk and a surface NNA envelope, each defined by the single parameter
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Figure 6. Calculated average potentials for a SC cluster for bulk, surface and subsurface sites
as functions ofNu.
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Figure 7. Simulated XPS spectra for the disordered SC(001) surface using (i) exact bulk plus
exact surface (solid curve), (ii) exact bulk plus ANA surface (dashed curve), and (iii) ANA bulk
plus ANA surface (dotted curve) components.

λ. However, we recall that the bulk–surface distinction made by the potentials in the CCM
cluster provides only the modification of the surface Madelung contribution to surface core-
level shifts in partially ionic systems, and provides no insight into the surface core-level
shifts already present in elemental solids. This uncertainty in the surface contribution may
be expected to confuse the unambiguous identification of core-level disorder broadening.
To address this point we have performed the three simulations shown in figure 7. The three
curves were obtained using (i) exact bulk plus exact surface (solid curve), (ii) exact bulk
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plus ANA surface (dashed curve), and (iii) ANA bulk plus ANA surface (dotted curve)
components. In each case the surface intensity was 15% of the bulk intensity. An arbitrary
−0.5 eV shift was added to the surface component to represent that contribution to the
surface core-level shift also present in elemental solids. Other values were also tried but
gave no new effects. It can be seen that the total spectrum is insensitive to the surface
disorder broadening. We found that the effect of bulk disorder broadening could not be
reproduced by varying the energy of the surface component in the ‘bulk(ANA)+surf(ANA)’
simulation. We conclude that for relatively weak surface emission we do not expect surface
effects to present a fundamental barrier to the experimental observation of bulk disorder
broadening of core-level XPS spectra.

4. Discussion

So far we have pointed out that the phenomena of disorder broadening in the core-level XPS
spectra of random alloys should be observable using high-resolution instruments. We have
predicted the magnitude of this effect based on the correlated-charge model of equation (5)
and estimates of the ‘charge-transfer’ parameterλ. In this section we discuss the validity
and context of the CCM and justify the choices ofλ. We will also comment on the possible
generalization of the CCM.

4.1. The validity of the CCM

Over the last decade, band-structure methods based on the coherent potential approximation
(CPA) in which a single A (B) atom is embedded in an effective medium have been found
to provide the best available description of the electronic structure of random substitutional
binary alloys [17]. In spite of its apparent success, the CPA is a single-site theory omitting
Madelung contributions to the total energy by construction, and so yields unreliable structural
properties for alloys with non-negligible charge transfer [9].

To address this shortcoming, Johnson and Pinski [18] have developed the ‘charge-
correlated CPA’ (cc-CPA). In this approach the charge on a sitei is assumed to be determined
solely by the number of unlike neighboursNu, although no assumption of linearity is made.
In this way the cc-CPA becomes a ‘(Z1+1)-site’ theory. By adding the electrostatic energy
due to the interaction ofQi=A (B)(Nu) with 〈V (Nu)〉A (B), the average potential shift for each
value ofNu, to the energy functional of the standard CPA, Johnson and Pinski observed
[18] a dramatic improvement in the formation energies of several alloys. They also found
that the self-consistently determined charges for theZ1 + 1 components were linear inNu
and with gradient independent of compositionx. Transferability appeared to hold even to
the impurity limit. These results lend great support to the CCM of Magriet al [10] given
in equation (5).

Given its success, Johnson and Pinski [18] then used the cc-CPA to develop a modified
single-site theory. The so-called screened CPA (scr-CPA) is obtained by considering a
single site experiencing the average electrostatic potentialV̄ . The scr-CPA was found to
incorporate most of the Madelung energy of the cc-CPA at greatly reduced computational
cost. We may draw a conceptual parallel between cc-CPA and scr-CPA and the NNA and
ANA models for core XPS spectra.

A similar single-site theory, referred to as SIM-CPA, has also been developed [19].
Though based on similar physics, this model and the scr-CPA gave rise to Madelung energies
differing by a prefactorβ. The apparent discrepancy has been explained by Korzhavyiet
al [20] who pointed out that the energy corrections in both models were approximate. By
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scaling the Madelung correction to reproduce thermodynamical properties of a number of
alloys, the optimum prefactor was found [20] to lie between 0.5 (the scr-CPA result) and 1.0
(the SIM-CPA result). Magriet al [10] have shown that equation (5) for an array of point
charges yields an exact Madelung correction withβ = 0.657, consistent with the analysis of
Korzhavyi et al [20]. These comparisons with first-principles calculations have confirmed
the validity and importance of point charge electrostatics and a simple charge-transfer picture
embodied in the CCM.

4.2. Estimates ofλ

There is justified reluctance for solid-state physicists to speak of ‘charge transfer’, as this
does not constitute a quantum mechanical observable and the concept is therefore vague
and arbitrary. Nonetheless the concepts of electronegativity and ionicity have had great
historical importance in chemistry [21, 22] and if used with care can provide a compact
description of electronic structure and bonding. Indeed Wolverton and Zunger have very
recently shown [11] how the charge-transfer picture can be used to explain the structural
stability of a wide range of compounds and alloys. These authors pointed out that although
any real-space charge partition scheme is necessarily arbitrary, the electrostatic energy in
first-principles calculations is well defined. One can then estimateλ by collapsing the charge
density onto the lattice sites so that the electrostatic energy of the resulting point charge
array reproduces that of first-principles calculations. In this way Wolverton and Zunger
obtained [11]λ ∼ 0.006 for CuPd and CuZn alloys. Combining this value with the Cu
lattice parameter we obtainλ/R ∼ 0.0024. This closely corresponds to the parameters
used throughout the present work for the FCC calculations. With the present value ofλ/R

equation (14) predicts a shift in Cu 2p binding energy of up to 1 eV in CuxPd1−x alloys,
in broad agreement [14] with experiment [23–25]. Thus our choice of parameters seems
sound and should be particularly relevant to CuxPd1−x alloys. Likewise the bulk-to-surface
intensity ratio and lifetime broadening used in section 3 were chosen to correspond to that
for the Cu 2p core level [26]. We suggest that the Cu 2p line in the CuxPd1−x alloy system
provides a suitable test case for the experimental identification of the disorder broadening
of core-level XPS spectra of random alloys. Preliminary results for this alloy system [27]
are in accord with the present theoretical work and provide experimental confirmation of
the presence of disorder broadening in core-level XPS spectra.

Wolverton and Zunger [11] identify a number of alloy systems with larger ionicity
(e.g. CuxAu1−x , NixAl 1−x and LixAl 1−x) which may exhibit more pronounced disorder
broadening. However, there will be an increased tendency for short-range ordering with
increasingλ, and sinceV i is determined primarily byNu it is clear that short-range ordering
will quench disorder broadening extremely efficiently.

4.3. The bond ionicity model

Most of the evidence lending support to the CCM description of charges in alloys is derived
from close-packed FCC alloys. Any description in terms of only the nearest-neighbour
shell will deteriorate as the coordination numberZ1 is reduced, as atoms will ‘see’ more
remote atoms between the gaps in the first shell. It should then be expected that the validity
of the CCM decreases with the ‘openness’ of the lattice. This has very recently been
demonstrated by explicitly comparing calculated charges and potentials obtained fromab
initio calculations for large disordered clusters with the predictions of the CCM [28, 29].
It was found that the CCM description of the electrostatics in random alloys is extremely
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good for FCC alloys, but less accurate for BCC systems [28, 29].
Another weakness of the CCM is the neglect of direct correlation between ‘like’ charges.

For example, one may expect a tendency for a charged A atom to share some of its excess
charge with any neighbouring neutral A atoms. We may also expect some deviation from
the linear scaling of charge transfer between unlike neighbours withNu. For example one
may expect the difference in charge between sites withNu = 0 and 1 to be greater than that
between sites withNu = Z1 − 1 andZ1. The dependence of elemental electronegativities
on charge state is well known [22], and can be expressed as

χi = χi0 + ηiQi. (21)

If we define the ionicity of a bond between two adjacent atomsI (i, j) as their electro-
negativity difference, we may suppose the charge on a site is given by the sum of its bond
ionicities:

Qi =
∑
j∈nni

I (ij) =
∑
j∈nni

(χ
j

0 − ηjQj − χi0 + ηiQi). (22)

In the ηA, ηB → 0 limit we recover the CCM with 2λSi ≡ χ
j

0 − χi0. With ηA, ηB 6= 0
equations (18) and (19) must be solved iteratively to achieve self-consistency. Nonetheless
this generalization of the CCM retains the simplicity and intuition of basic chemical
concepts. We expect the bond ionicity model (BIM) given by equations (18) and (19)
to reduce the variation in charge in a disordered system and so maintain an even greater
degree of local charge neutrality than the CCM.

5. Summary

We have discussed the correlated-charge model in which the charge on any site is assumed
to be proportional to its number of unlike neighboursNu. We have shown that the average
potential at a site with a givenNu is also proportional toNu. The small amount of scatter
about these averages is Gaussian in character and increases with the openness of the crystal
structure. Averaging out theNu-dependence, we showed thatV̄ A (B), the potential averaged
over all A (B) sites, is given byQ̄/R, corresponding to an effective Madelung constant of
1 for all structures and all compositions. Using a realistic estimate of the model parameter
λ we have shown that disorder broadening of core-level XPS lines in random alloys should
be observable with the resolution afforded by current XPS spectrometers. Conversely,
if disorder is not observed, XPS should be a indication of the presence of short-range
order. The ‘nearest-neighbour approximation’, in which the XPS spectrum is given by the
superposition ofZ1+1 components, was found to give an excellent description of the XPS
lineshape of disordered alloys. A model generalizing the CCM model for the charges in
random alloys was also presented.
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